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Abstract A numerical simulation has been carried out to investigate the buoyancy induced flow
and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of two
parallel wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal.
Two straight-vertical sidewalls are considered adiabatic. Governing equations are discretized using
the control volume based finite-volume method with collocated variable arrangement. Simulation
was carried out for a range of surface waviness ratios, l ¼ 0:00-0:25; aspect ratios, A ¼ 0.25-0.5;
and Rayleigh numbers Ra ¼ 100-107 for a fluid having Prandtl number equal to 1.0. Results are
presented in the form of local and global Nusselt number distributions, streamlines, and isothermal
lines for different values of surface waviness and aspect ratios. For a special case of l ¼ 0 and
A¼1.0, the average Nusselt number distribution is compared with available reference. The results
suggest that natural convection heat transfer is changed considerably when surface waviness
changes and also depends on the aspect ratio of the domain. In addition to the heat transfer results,
the heat transfer irreversibility in terms of Bejan number (Be) was measured. For a set of selected
values of the parameters (l, A, and Ra), a contour of the Bejan number is presented at the end of
this paper.
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Nomenclature
A ¼ aspect ratio ð¼ d=LÞ
Be ¼ Bejan number (see equation (24))
Br ¼ Brinkman number ð¼ Ec £ PrÞ
g ¼ gravity vector, m s22

Ec ¼ Eckert number
Gr ¼ Grashof number, ð¼ r 2gbDTd 3=m 2Þ

h ¼ heat transfer coefficient, W m22 K21

k ¼ thermal conductivity, W m21 K21

L ¼ horizontal length of the wave, m
Nu ¼ Nusselt number
n̂ ¼ unit normal vector
Pr ¼ Prandtl number ð¼ n=kÞ
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Introduction
Free or forced convection heat transfer inside geometries of regular shape
(rectangular channel, circular pipe, etc.) has many significant engineering
applications, for example, double-wall thermal insulation, underground cable
systems, solar-collectors, electric machinery, cooling systems of
micro-electronic devices, natural circulation in the atmosphere, the molten
core of the earth, etc. A considerable number of published articles are available
that deal with flow characteristics, heat transfer, flow and heat transfer
instability, transition to turbulence, design aspects, etc. Curious readers are
suggested to read the paper by Yang (1987) for a comprehensive reference. On
the other hand, studies dealing with convection problems inside more complex
geometries have been rather limited. The phrase complex geometry covers
different types of geometric configurations, namely L-shaped cavities
(Mahmud, 2002), trapezoidal cavities (Peric, 1993), arc shaped enclosures
(Chen and Cheng, 2002), wavy cavities (Mahmud et al., 2002c), triangular
cavities (Poulikakos and Bejan, 1983), etc. Flow and heat transfer analyses
inside such geometry is a comparatively difficult task either experimentally or
analytically (or numerically). Therefore, less effort has been given to analyze
flow and thermal characteristics inside complex shaped geometry for the past
several decades. The primary focus is to analyze the flow and thermal
characteristics inside a special class of complex shaped geometry, i.e. a
geometry with wavy walls that follows a well-defined mathematical function
(sine or cosine). Enclosures with wavy walls have always been less attractive to
researchers due to their complex fluid dynamic behavior as well as their
geometrical complexity. Sobey (1980a) published numerical results with an
experimental verification (Sobey, 1980b) of flow patterns inside a furrowed
channel. A furrowed channel is a special type of channel with wavy wall that

P ¼ dimensionless pressure
Ra ¼ Rayleigh number, ð¼ Gr £ PrÞ
T ¼ temperature, K
U ¼ dimensionless velocity component in

the x-direction
V ¼ dimensionless velocity component in

the y-direction
x ¼ horizontal coordinate
X ¼ dimensionless horizontal coordinate
y ¼ vertical coordinate
Y ¼ dimensionless vertical coordinate

Greek symbols
a ¼ amplitude of the top and the bottom

walls, m
b ¼ thermal expansion coefficient, K21

d ¼ inter wall spacing between the top and
bottom walls, m

l ¼ surface waviness ratio, ð¼ a=LÞ
k ¼ thermal diffusivity, m2 s21

n ¼ kinematic viscosity, m2 s21

r ¼ density of the fluid, kg m23

F ¼ irreversibility distribution ratio
V ¼ dimensionless temperature

difference
Q ¼ dimensionless temperature

Subscript
av ¼ average value
1 ¼ at ambient condition
C ¼ average value based on cold wall
H ¼ average value based on hot wall
L ¼ local value
W ¼ value at the wall
0 ¼ reference value
D ¼ difference between the two values
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follows the cosine function. Later, Sobey extended his work by calculating
oscillatory flow pattern inside the same geometry (Sobey, 1982). Further
extension is done by Sobey (1983) by calculating the flow separation
characteristics inside the wavy walled channel. The fluid dynamics of the
separation phenomenon inside the wavy walled channels is still incomplete,
thus motivating some researchers to extend the work of Sobey (1983), for
example, Leneweit and Auerbach (1999) and Mahmud et al. (2002a,b). The
foregoing discussions that have dealt with problems of wavy walled channels
are very much restricted to fluid flow only. A limited number of forced
convection heat transfer results are reported by Russ and Beer (1997a,b) and
Wang and Vanka (1995) whereas considerable attention has been devoted
towards the analyses of laminar steady heat transfer and fluid flow inside
complex shaped domains over the past two decades. However, there is limited
literature dealing with natural convection inside wavy wall domain.
Fabrication of devices with wavy walls depend on the parameters like
amplitude, wavelength, phase angle, inter-wall spacing etc. Each of these
parameters significantly affects the hydrodynamic and thermal behavior of the
fluid inside it.

In our earlier work (Mahmud et al., 2002c), we have shown the effect of
surface waviness on natural convection heat transfer and fluid flow inside a
vertical wavy walled enclosure for a range of wave ratio ð0:00 # l # 0:4Þ and
aspect ratio ð1:0 # A # 2:0Þ: We reported a decrease in average heat transfer
with the increase of surface waviness. For the horizontal in-phase wavy walled
enclosure (Das and Mahmud, 2003), hydrodynamic and thermal behaviors of
the fluid inside the enclosure have been investigated for a fixed aspect ratio. In
that investigation, we explored the change of true periodic nature of the local
Nusselt number distribution with the increase of amplitude-wavelength ratio,
but we have not seen any significant influence on the average heat transfer rate
due to the surface waviness. One of our interesting findings was the increase of
average heat transfer with the increase of surface waviness from zero to a
certain value. Recently, Adjlout et al. (2002) discussed natural convection in an
inclined cavity with hot wavy wall and cold flat wall. They showed the
decrease in average heat transfer with the surface waviness when compared
with flat wall cavity. However, in their report, they showed result for the grid of
42 £ 42 with an error level of 1.64 percent whereas heat transfer increased by
only a small amount when compared to their error level.

Several research works have been conducted for convection heat transfer
inside enclosure or channel with wavy walls. Among them, Kumar (2000)
presented the parametric results of flow and thermal fields inside a vertical
wavy enclosure with porous media. Kumar (2000) concluded that the
surface temperature was very sensitive to drifts in the surface undulations,
phase of the wavy surface and number of the wave. Hadjadj and Kyal
(1999) numerically examined the effect of sinusoidal protuberances on heat
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transfer and fluid flow inside an annular space using a non-orthogonal
coordinate transformation. In their study, it was reported that both the
local and average heat transfer increase with the increase of protuberance
amplitude and Rayleigh number, and decreasing Prandtl number. Yao
(1983) presented the near wall characteristics of flow and thermal field of a
vertical wavy wall. Saidi et al. (1987) presented numerical and experimental
results of flow over, and heat transfer from, a sinusoidal cavity. They
reported that the total heat exchange between the wavy wall of the cavity
and the flowing fluid was reduced by the presence of vortex. The vortex
plays the role of a thermal screen, which creates a large region of uniform
temperature in the bottom of the cavity. Asako and Faghri (1987) and
Mahmud et al. (2001) gave a finite-volume prediction of heat transfer and
fluid flow characteristics inside a wavy walled duct and tube, respectively.
Lage and Bejan (1990) documented heat transfer results near a periodically
(timewise and spatial) stretching wall. Hossain and Rees (1999), Moulic and
Yao (1989) and Rees and Pop (1995) presented similar solutions for natural
convection flow near wavy surface at different boundary conditions. Aydin
et al. (1999), Elsherbiny (1996), Hamady et al. (1989), Ozoe et al. (1975) and
Sundstrom and Kimura (1996) presented results of heat transfer
characteristics inside the rectangular enclosures at different aspect ratios
and orientations without surface waviness.

In this study, we have presented numerical results based on the
finite-volume analysis for laminar natural convection inside a cavity, which
consists of two wavy surfaces with different amplitude-wavelength ratios
and aspect ratios. Rate of heat transfer in terms of local and global Nusselt
numbers are calculated for different Rayleigh numbers. Flow and thermal
fields are analyzed by parametric presentation of streamlines and isothermal
lines.

Mathematical modeling
In this section, we present the mathematical formulation of the problem
considered in terms of the continuity, momentum, and energy equations, and
the pertinent boundary conditions for a wavy domain containing two wavy
and two flat surfaces. We begin by considering two-dimensional laminar
natural convection of an incompressible and Newtonian fluid in a cavity
as shown in Figure 1. Distance between the two straight walls is L, two
wavy walls is d, and a is the amplitude of the wavy walls. Modeling the
flow as “Boussinesq-incompressible” to take into account the coupling
between the energy and momentum equations, we regard the density r as
constant everywhere except in the buoyancy term of momentum equations
(equation (3)). Correspondingly, the non-dimensional equations governing
the conservation of mass, momentum and energy in the cavity of Figure 1 are
as follows

HFF
13,8

1100



›U

›X
þ

›V

›Y
¼ 0; ð1Þ

›U

›t
þ U

›U

›X
þ V

›U

›Y
¼ 2

›P

›X
þ

ffiffiffiffiffiffi
Pr

Ra

r
›2U

›X 2
þ

›2U

›Y 2

� �
; ð2Þ

›V

›t
þ U

›V

›X
þ V

›V

›Y
¼ 2

›P

›Y
þQþ

ffiffiffiffiffiffi
Pr

Ra

r
›2V

›X 2
þ

›2V

›Y 2

� �
; ð3Þ

›Q

›t
þ U

›Q

›X
þ V

›Q

›Y
¼

1ffiffiffiffiffiffiffiffiffiffi
PrRa

p
›2Q

›X 2
þ

›2Q

›Y 2

� �
: ð4Þ

Equations (1)-(4) are put into their dimensionless forms by scaling different
lengths with average inter wall spacing between the top and the bottom walls
(d), velocity components with reference velocity (V0) which is equal to
(gbDTd)1/2, pressure with rV 2

0; time with d/V0. The dimensionless temperature
can be defined as Q ¼ ðT 2 T1Þ=DT where DT is equal to (TH2TC).

Boundary and initial conditions
Figure 1 shows the computational grid structure and the geometry under
consideration in the present investigation along with the coordinate framework
and different boundary conditions. The surface shape of the wavy walls
follows the profile given in equations (5) and (6). The hot and cold wall
temperatures are TH and TC, respectively. Initial fluid temperature inside the
cavity is taken as T1. The initial temperature of the adiabatic walls is set equal
to the initial fluid temperature (T1) inside the cavity. The gravity acceleration
g is acted downwards. No slip boundary condition is applied for velocity
components at each wall. For the present investigation, boundary conditions
are summarized by the following equations:

Figure 1.
Schematic representation

of the computational
geometry under

consideration with
boundary conditions
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0 # X* # 1 and

0 # Y* # l½1 2 cos ð2pX* Þ� : U ¼ V ¼ 0; Q ¼ 1;
ð5Þ

0 # X* # 1 and

A # Y* # A þ l½1 2 cos ð2pX* Þ� : U ¼ V ¼ 0; Q ¼ 0;
ð6Þ

X* ¼ 0 and 0 # Y* # A : U ¼ V ¼ 0;
›Q

›n
¼ 0; ð7Þ

X* ¼ 1 and 0 # Y* # A : U ¼ V ¼ 0;
›Q

›n
¼ 0; ð8Þ

where X* ð¼ XAÞ and Y* ð¼ YAÞ are modified dimensionless horizontal and
vertical lengths.

Numerical methodology
To conduct a numerical simulation for the thermofluid dynamics fields, we
used the technique similar to that Hortmann et al. (1990) based on the
finite-volume method as described in Ferziger and Peric (1996). The
finite-volume method starts from the conservation equation in integral form asZ

S

rfv · n̂ dS ¼

Z
S

G gradf · n̂ dS þ

Z
V

qf dV ; ð9Þ

where f is any variable, G is the diffusivity for the quantity f, and qf is the
source or sink of f.

The solution domain is subdivided into a finite number of contiguous
quadrilateral control volumes (CV). The CVs are defined by coordinates of their
vertices, which are assumed to be connected by straight lines. This simple form
is possible due to the fact that the equations contain no curvature terms and
only the projections of the CV faces onto the Cartesian coordinates surfaces are
required in the course of discretization, as demonstrated below. All the
dependent variables solved for and all fluid properties are stored in the CV
center (collocated arrangement). A suitable spatial distribution of dependent
variables is assumed and the conservation equations (1)-(4) are applied to each
CV, leading to a system of non-linear algebraic equations. The main steps of
discretization procedure to calculate convection and diffusion fluxes and source
terms are outlined below.

The mass flux through the cell face “e” (Figure 2) is evaluated as

_me ¼

Z
Se

rV dS < ðrVÞeS1e ¼ re USx
1 þ VSy

1

� �
; ð10Þ
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where S1e is the surface vector representing the area of the cell face ðj ¼ constÞ
and Sx

1e and Sy
1e denotes its Cartesian components. These are given in terms of

the CV vertex coordinates as follows:

Sx
1e ¼ ðyn 2 ysÞ and S y

1e ¼ 2ðxn 2 xsÞ: ð11Þ

The mean cell face velocity components, Ue and Ve are obtained by
interpolating neighbors’ nodal values in a way, which ensures the stability of
grid scheme. The convection flux of any variable f can be expressed as:

FC
e ¼

Z
Se

rfV dS < ðrfV ÞeS1e ¼ _mefe: ð12Þ

The diffusion flux of f is calculated as:

FD
e ¼ 2

Z
Se

Gf gradf dS < 2ðGf gradfÞeS1e: ð13Þ

By expressing the gradient of f at the cell face center “e”, which is taken here to
represent the mean value over the whole cell face, through the derivatives in
j and h directions (Figure 2) and by discretizing these derivatives with CDS,
the following expression results:

FD
e <

Gw;e

S1e · PE
½ðfE 2 fPÞðS1e · S1eÞ þ ðfn 2 fsÞeðS1e · S2eÞ�; ð14Þ

where PE is the vector representing the distance from P to E, directed towards
E. S2e is the surface vector orthogonal to PE and directed outwards positive h

Figure 2.
A typical 2D-control

volume and the notation
for a Cartesian grid
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coordinate (Figure 2), representing the area in the surface h ¼ 0 bounded by
P and E. Its x and y components are:

Sx
2e ¼ 2ð yE 2 yPÞ and Sy

2e ¼ ðxE 2 xPÞ: ð15Þ

The volumetric source term is integrated by simply multiplying the specific
source at the control volume center P (which is assumed to represent the mean
value over the whole cell) with the cell volume i.e.

Qq
f ¼

Z
V

qf dV < ðqfÞPDV : ð16Þ

The pressure term in the momentum equations are treated as body force and
may be regarded as pressure sources for the Cartesian velocity components.
They are evaluated as:

Q p
ui
¼ 2

Z
S

pii dS ¼ 2

Z
V

ðgrad piiÞ dV

< 2½ð pe 2 pwÞS1P þ ð pn 2 psÞS2p� · ii; ð17Þ

where the surface vectors S1p and S2p represent the area of the CV cross
section at j ¼ 0 and h ¼ 0; respectively. Since CV’s are bounded by straight
lines, these two vectors can be expressed through the CV surface vectors, e.g.
S1P ¼ ðS1e þ S1wÞ=2: Terms in the momentum equations, not featuring in
equation (9), are discretized using the same approach and added to the source
term. After summing up all cell face fluxes and sources, the discretized
transport equation reduces to the following algebraic equation:

APfP þ
nb

X
Anbfnb ¼ Qf; ð18Þ

where the coefficients Anb, contains the convective and diffusive flux
contributions and Qf represents the source term. The system of equations is
solved by using Stone’s SIP solver.

Discretized momentum equations lead to an algebraic equation system for
velocity components U and V where pressure, temperature, and fluid properties
are taken from the previous iteration except the first iteration where initial
conditions are applied. These linear equation systems are solved iteratively
(inner iteration) to obtain an improved estimate of velocity. The improved
velocity field is then used to estimate new mass fluxes, which satisfy the
continuity equation. Pressure-correction equation is then solved using the same
linear equation solver and to the same tolerance. Energy equation is then
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solved in the same manner to obtain better estimate of new solution. Then the
above procedure is repeated for a new time step. For time marching, we
selected Three Time Level Method which is a fully implicit scheme of second
order accurate. Iteration is continued until the difference between the two
consecutive field values of variables is less than or equal to 1025.

Accuracy
In the present investigation, five combinations (20 £ 10, 40 £ 20, 80 £ 40,
160 £ 80, and 320 £ 160) of control volumes are used to test the effect of grid
size on the accuracy of the predicted results. Figure 3 shows the distribution of
average Nusselt numbers of the hot wall as a function of grid sizes for four
different Rayleigh numbers. It is clear from the figure that at lower Rayleigh
number, average Nusselt number is almost independent of grid sizes. At higher
Rayleigh numbers, the two higher grid sizes (160 £ 80 and 320 £ 160) give
almost the same result. It is well known that the high mesh refinement always
provides better result in the finite-volume method. The main disadvantage in
taking higher mesh number is the increase in calculation time, which can be
reduced by using a higher speed of Pentium processor. Our goal was to get
better results. Thus, throughout this study, the results are presented for 320 £
160 CVs’ for better accuracy. Predicted results of average Nusselt numbers for
a square cavity ðA ¼ 1:0; l ¼ 0Þ with the same boundary conditions are
compared with the results given by Bejan (1984) and Ozisik (1985).
Comparisons are shown in Figure 4, where average Nusselt number is
plotted as a function of Rayleigh number. Predicted results show a very good
agreement with the result of Ozisic at lower Rayleigh number, but differ from
Bejan’s prediction. At higher Rayleigh number, present prediction shows better
agreement with Bejan compared to Ozisic’s results.

Figure 3.
Variation of average
Nusselt number as a

function of number of CV
for A ¼ 0:25 and

l ¼ 0:05
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Results and discussions
Flow and thermal field
The flow pattern inside the wavy enclosure and the temperature profile are
presented in terms of streamlines and isothermal lines in Figure 5(a)-(d) for
A ¼ 0:25; l ¼ 0:10 at four selected Rayleigh numbers. At low Rayleigh
number when convection current inside the cavity is comparatively weak, fluid
stream near the hot wall tends to move towards the centerline or crest of the
cavity were two streams from the opposite direction mix and rise upwards.
Two counter-rotating vortices with small cores are observed on the flow field
were bi-cellular flow pattern divides the cavity into two symmetric parts with
respect to the centerline ðX* ¼ 0:5Þ of the cavity. Due to the uniform
temperature gradient at low Rayleigh number ð¼ 103Þ circulation inside the
cavity is very weak. Convection is less prominent at this Rayleigh number and
heat transfer is mainly dominated by conduction. The basic difference between
the isotherms in a wavy cavity with other geometry is their shape. Isothermal
lines are nearly parallel to each other and follow the geometry of the wavy
surfaces. A further increase of Rayleigh numbers increases the circulation
strength inside the cavity. Ra ¼ 104 is also characterized by the bi-cellular flow
pattern, but thermal field is completely different compared to Ra ¼ 103: Here,
uniform temperature profile is changed and three high gradient spot is
observed due to rapid circulation of fluid inside the cavity. Isotherms turn up
(convective distortion) towards the cold wall due to the strong influence of the
convection current. At Ra ¼ 105; multi-cellular flow appears with four vortices.
Due to comparatively high buoyant effect, another vertical stream of the fluid
appears near the adiabatic walls. A periodic swirling of the isothermal lines
appear at Ra ¼ 105 due to the appearance of multi-cellular flow. Two high
gradient spots appear near the bottom wall, where isothermal lines are
concentrated. Heat transfer rate is higher in magnitude at that spots.

Figure 4.
Validation of average
Nusselt number for
A ¼ 0:25 and l ¼ 0:0
with other reference
work
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Further increase of Rayleigh number, increases the strength of the vortices,
where four-cell multi-cellular flow pattern turns into two cell bi-cellular pattern.
This bi-cellular flow pattern is qualitatively different from the flow pattern at
low Rayleigh number. Periodic swirling nature of isothermal lines disappears
due to the occurrence of reverse transition in flow field. Hot spots almost
occupy the bottom wall of the cavity.

Transition of cell mode
The problem of the onset of hydrodynamic and thermal instabilities in the
horizontal layers of fluid heated from bellow is well suited to illustrate the
many facets, mathematical and physical, of the general theory of
hydrodynamic stability. Specially, many aspects of the stability (or
instability) of the fluid-layer trapped between the two rigid walls (bottom hot
and top cold) have been treated by many researchers over the last 100 years (for
example, see Chandrasekhar, 1961). The transition of cell mode of the fluid
inside two rigid walls (in Rayleigh-Benard convection) is also a well established
problem. However, a mathematical analysis to predict the transition parameter

Figure 5.
Streamlines (top)

and isothermal lines
(bottom) for A ¼ 0:25

and l ¼ 0:10
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(for example, the critical Rayleigh number) and the physical mechanism is an
extremely challenging task in the case of wavy walled enclosure under the
Rayleigh-Benard convection like situation due to the presence of two additional
parameters (A and l). Instead of performing a linear stability analysis, we
modified our numerical algorithm for post processing (a programme written in
FORTRAN77 and connected to the software Tecplot 8) to predict the transition
between unicellular flow to bicellular or multicellular flow. Initially, for
constant l and A, the flow solver is executed for a range of Rayleigh numbers
keeping a considerably large gap between the two consecutive Rayleigh
numbers (50-100 depending on the value l). Once we get a rough picture of the
transition of cell mode, we re-execute the flow solver for a small range of
Rayleigh numbers keeping a comparatively small gap between the two
consecutive Rayleigh numbers (1–5). For example, when l ¼ 0:01 and A ¼
0:25; the magnitude of the starting Rayleigh number for the flow solver is
1,700. Note that the first critical Rayleigh number for the Rayleigh-Benard
convection with rigid walls is 1,708 (Chandrasekhar, 1961). Figure 6(a)-(h)
shows the cell pattern for l ¼ 0:01 and A ¼ 0:25 for eight selected values of
Rayleigh number. A symmetric bicellular flow pattern characterizes the flow
filled inside the cavity until the value of Rayleigh number reaches 1,905. Two
additional cells appear near the adiabatic walls (Figure 6(d)) at which the

Figure 6.
Variation of cell pattern
inside a cavity with
l ¼ 0:01 and A ¼ 0:25
for different Rayleigh
number
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Rayleigh number changes the bicellular flow into a four-cell multicellular flow.
These cells grow in size with the increasing Rayleigh number, but growth rate
of the cells becomes slower when Ra approaches 104. A second transition of
the cell mode is observed near Ra ¼ 106: The overall cell modes and their
transitions are shown in Figure 7. Note that a non-uniform scale is selected for
Rayleigh numbers in the abscissa of the Figure 7 for convenience. However,
this scenario is completely different for l ¼ 0:125 as shown in Figures 8 and 9.
The symmetric bicellular flow changes into an asymmetric tricellular flow
around Ra ¼ 13; 995: This tricellular flow pattern remains unchanged for a
small interval of Rayleigh number ðRa ¼ 13; 995 � 14; 877Þ: Then a second
transition makes it to a four-cell multicellular flow pattern. A reverse transition
occurs around Ra ¼ 106: The overall cell modes and their transitions are
shown in Figure 9 for this case.

Heat transfer
Heat transfer is calculated in terms of local (NuL) and average (Nuav) Nusselt
numbers using the following equations

NuL ¼
d

k
hL ¼

d

k

k

DT

dT

dn

� �
w

	 

¼

dQ

dn̂

� �
w

; ð19Þ

Nuav ¼
1

S

Z S

0

NuL ds ð20aÞ

S ¼

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

dY*

dX*

� �2
s

dX* ¼
EllipticE 2p

ffiffiffiffiffiffiffiffiffi
2l2

p� 
p

; ð20bÞ

Figure 7.
Transition of the cell

mode as a function
of Rayleigh number for
l ¼ 0:01 and A ¼ 0:25
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where the special function “EllipticE” is the elliptic integral of second kind
(Abramowitz and Stegun, 1965). Local Nusselt number distribution is
presented in Figures 10 and 11. Average Nusselt number distribution is
presented in Figures 12-14. Detail discussions on heat transfer is presented in
the following two paragraphs.

Local Nusselt number distribution along the hot wavy wall is shown in
Figure 10 for a constant Rayleigh number and four selected surface waviness

Figure 8.
Variation of cell pattern
inside a cavity with
l ¼ 0:125 and A ¼ 0:25
for different Rayleigh
number
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(l ¼ 0:0; 0.05, 0.075, 0.1) for an aspect ratio, A ¼ 0:25: At Ra ¼ 104; heat
transfer rate shows true periodic nature with respect to the axial distance along
the length of the bottom wall for l ¼ 0:0; where three peaks represent not only
the three spots of highest temperature gradient, but also characterize three
pairs of cell generated due to the fluid motion inside the cavity. However, for
l ¼ 0:05; 0.075, 0.1 local Nusselt number distribution changed significantly
due to low temperature gradient at the midpoint of the cavity. In that case, heat

Figure 9.
Transition of the cell

mode as a function
of Rayleigh number for
l ¼ 0:125 and A ¼ 0:25

Figure 10.
Change of the local

Nusselt number along
the length of the bottom

wave
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transfer rate increases up to the X* ¼ 0:15 and falls along the wavy wall
gradually up to the midpoint ðX* ¼ 0:5Þ of the cavity. This nature is similar
for other surface waviness with a slight variation in magnitudes. Completely
different picture is observed at Ra ¼ 105: For l ¼ 0:0; three peaks again
represent the three spots of highest temperature gradient with a higher
temperature gradient at the mid point of the wave.

Figure 12.
Nusselt number as a
function of Rayleigh
number for different
surface waviness for
two fixed aspect ratio:
(a) A ¼ 0:25; and
(b) A ¼ 0:50

Figure 11.
Change of the local
Nusselt number along
the length of the bottom
wave
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Figure 11 depicts the extent to which the local Nusselt number distribution is
affected by changes in the aspect ratio. We observed that at Ra ¼ 104; two
peaks move towards the center of the cavity with the increase of aspect ratio.
Similar pattern was observed at Ra ¼ 106; but the magnitude of the two peak is
higher. It is also noticed that heat transfer rate is faster near the straight wall
and decrease rapidly with the increase of X*. Whatever be the values of aspect
ratio, heat transfer rate is always minimum at the mid point of the bottom wall.

Local Nusselt numbers are integrated to calculate the average value of the
Nusselt number according to equation (20). Average Nusselt number is plotted
as a function of Rayleigh number in Figure 12 for two fixed aspect ratios,
A ¼ 0:25 and 0.50, for different surface waviness. At lower Rayleigh number,

Figure 13.
Nusselt number as a
function of Rayleigh
number for different

aspect ratio for two fixed
surface waviness:
(a) l ¼ 0:05; and

(b) l ¼ 0:10

Figure 14.
Nusselt number as a

function of surface
waviness for fixed

Rayleigh number
ðRa ¼ 5 £ 104Þ:

Two lines correspond
to two different aspect

ratio of the enclosure as
indicated in the legend
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the change of average heat transfer is almost negligible. However, at higher
Rayleigh number this effect is quite significant. At higher surface waviness
ratio heat transfer rate is higher at higher Rayleigh number when surface
waviness ratio increase from zero to other values and then, further increases of
surface waviness ratio which shows a negligible effect on average heat transfer
rate. But for A ¼ 0:5; different scenario is observed at higher Rayleigh number
though the similar trend is observed at lower higher Rayleigh number. Here,
heat transfer rate increases with the increase of surface waviness ratio which
increase from zero to other values.

Effect of aspect ratio
Figure 13 depicts the variation of average Nusselt number as a function of the
Rayleigh number for three different aspect ratios, A ¼ 0:25; 0.375, and 0.5 and
a constant surface waviness. Two sets of results are shown, those
corresponding to l ¼ 0:05 in Figure 13(a), and l ¼ 0:10 in Figure 13(b).
From Figure 13(a) it is clear that the change of heat transfer rate is negligible
with changes of aspect ratio of a wavy enclosure. A tiny increase of heat
transfer rate is obtained at higher aspect ratio. For l ¼ 0:10; similar trend is
observed with slightly better variation of heat transfer with aspect ratio.
Magnitudes of average Nusselt number are slightly higher for higher aspect
ratio at higher Rayleigh number.

Effect of surface waviness
Figure 14 shows the variation of average Nusselt number for a hot wall as a
function of surface waviness (l) for Ra ¼ 5 £ 104: Four lines correspond to four
different aspect ratios of the enclosure as indicated in the legend where
symbols show the data points and lines are the best fitted curve. We observe
completely a different picture for different aspect ratios at lower surface
waviness ratio. At A ¼ 0:25; heat transfer rate decrease rapidly with the
increase of surface waviness, but after a certain waviness ðl $ 0:2Þ; heat
transfer rate increases. At l ¼ 0:2; we observed the minimum heat transfer
compared to other values of surface waviness. Completely different nature is
observed on the heat transfer rate for A ¼ 0:5: When surface waviness
increases from zero to another value, heat transfer also increases following
which the negligible variation is obtained for 0:05 , l , 0:1: Further increase
of surface waviness causes the decrease of heat transfer rate up to l < 0:2;
after which the heat transfer rate again goes up.

Axial velocity profiles
For three selected Rayleigh numbers (¼104, 105, and 106), axial velocity profiles
are shown in Figure 15(a)-(c) at six locations along the axial direction (X*) and
for a constant surface waviness ðl ¼ 0:1Þ: Velocity profiles are symmetric in
the vertical centerline ðX* ¼ 0:5Þ of the cavity for all the values of the Rayleigh
number. We only concentrate about our discussions on the left portion of the
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cavity about the vertical centerline. Vertical line (dash-dot-dot) with each
profiles indicate a reference line where axial velocity is zero. At Ra ¼ 104

(Figure 15(a)), an S-shaped velocity profile resembles to the sinusoidal
distribution of the velocity along the vertical direction which is a characteristic
distribution of the velocity for shallow cavities. Velocity profiles support the
bi-cellular flow pattern (see streamlines in Figure 5(b)) inside the cavity at this
Rayleigh number. Magnitude of the velocity decreases towards the adiabatic
walls and the vertical centerline of the cavity. Appearance of multi-cellular flow
(see streamlines in Figure 5(c)) dramatically changes the pattern of axial

Figure 15.
Axial velocity profiles at
X* ¼ 0:125; 0.25, 0.375,

0.50, 0.625, 0.75 and 0.875
for Ra ¼ 104; 105, and

106 and l ¼ 0:10

Effect of surface
waviness and

aspect ratio

1115



velocity profile as shown in Figure 15(b). Considering the left half of the cavity,
the vortex near the adiabatic wall is rotating clockwise and near the vertical
symmetry line it is in the counterclockwise direction. Locations X* ¼ 0:125
and 0.375 coincide with the clockwise and counterclockwise vortices,
respectively. This is the main reason for the opposite nature of profiles at
these two locations. However, most of the upper parts of the location X* ¼ 0:25
(see also Figure 5(c)) are occupied by the counterclockwise vortex. Only a small
part near the bottom wall is shared by the clockwise vortex. This common
sharing by two vortices occurs due to the presence of the wavy nature of the top
and the bottom walls, which is absent (no sharing) in the case of the cavity with
flat walls. Axial velocities at the upper part of the location X* ¼ 0:25 form the
usual S-shaped profile. A small portion near the bottom wall shows negative
velocities due to the interference of the clockwise vortex. Flow at Ra ¼ 106 is
bi-cellular (see Figure 5(d)) and this is qualitatively different from the flow
feature at Ra ¼ 104 (which is also bi-cellular in nature). This is the boundary
layer regime of the flow and velocity profiles which are characterized by high
near-wall-gradient along with almost zero velocity at the center of the cavity.

Heat transfer irreversibility
Any heat transfer problem is always accompanied by entropy generation,
hence by the one-way destruction of available work (Bejan, 1996). Entropy
generation is related to the thermodynamic imperfection of a real device and, in
the long run, is a real cause for the inherent irreversibility of such devices.
Therefore, it makes good engineering sense to focus on the irreversibility of
heat transfer processes and try to understand the function of the entropy
generation mechanism. The starting point of the irreversibility analysis is a
perfect description of the local entropy generation rate and according to Bejan
(1996), the local rate of entropy generation can be written as
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where T0 is the reference temperature. Using the same characteristic
parameters already used for the dimensionless purpose, the non-dimensional
form of equation (21) is
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where NS, Br, and V represent entropy generation number, the Brinkman
number, and dimensionless temperature difference, respectively. Entropy
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generation number (NS) is a ratio between the local entropy generation rate
( _S 000

gen) and a characteristic entropy transfer rate ( _S 000
0 ) which is shown in

the following equation

NS ¼
_S 000

gen

_S 000
0

; where _S 000
0 ¼

kðDTÞ2

d2T2
0

ð23Þ

The dimensionless form of the entropy generation rate (NS), given in equation
(22), consists of two parts. The first part (first square bracketed term at the
right-hand side of equation (22)) is the irreversibility due to finite temperature
gradient and generally termed as heat transfer irreversibility (HTI). The second
part is the contribution of fluid friction irreversibility (FFI) to entropy
generation, which can be calculated from the second square bracketed term.
The overall entropy generation, for a particular problem, is an internal
competition between HTI and FFI. Usually, free convection problems, at low
and moderate Rayleigh numbers, are dominated by the HTI (discussed later in
detail). Entropy generation number (NS) is good for generating entropy
generation profiles or maps, but fails to give any idea whether fluid friction or
heat transfer dominates. Bejan (1979) proposed irreversibility distribution ratio
(F), which is the ratio between FFI and HTI. As an alternative irreversibility
distribution parameter, Paoletti et al. (1989) defined Bejan number (Be), which
is the ratio of HTI to the total entropy generation. Mathematically, Bejan
number becomes

Be ¼
HTI

HTI þ FFI
¼

1

1 þF
ð24Þ

Bejan number ranges from 0 to 1. Accordingly, Be ¼ 1 is the limit at which the
HTI dominates, Be ¼ 0 is the opposite limit at which the irreversibility is
dominated by fluid friction effects, and Be ¼ 1=2 is the case in which the heat
transfer and fluid friction entropy generation rates are equal.

For a fixed aspect ratio ðA ¼ 0:25Þ; contours of Bejan numbers are presented
in Figure 16(a)-(f) for Ra ¼ 104 and 105 and l ¼ 0:0; 0.05, and 0.1. Whatever the
values of Ra, l, and A, be regions near the top and the bottom walls always act
as strong concentrators of HTI. The maximum value of Bejan contour (Bemax)
appears in the immediate neighborhood of the top and the bottom walls. At
Ra ¼ 104 and l ¼ 0:0 (Figure 16(a)), HTI is characterized by three spots of
“Highly-Concentrated-Bejan-Contours (HCBC)” near the top wall and two spots
near the bottom wall. To understand HTI, as shown by Bejan contour in
Figure 16(a), in detail first focus on Figure 17 (we will go through
Figure 16(a)-(f) next). To ease our understanding about Figure 16(a), we
introduce field of streamlines and isothermal lines along with the constant
Bejan number contours in Figure 17. We will first focus our attention on the
three spots marked by ellipse (E1, E2 and E3). This is a case of multicellular
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Figure 16.
Contours of Bejan
number for A ¼ 0:25

Figure 17.
A combined plot of
streamlines, isothermal
lines, and constant
Bejan number contour
for Ra ¼ 104; l ¼ 0:0;
and A ¼ 0:25
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flow with four vortices. Dashed lines indicate the clockwise rotation and solid
lines indicate the counterclockwise rotation. Fluid region marked by E1 is
forced upward direction. At this Rayleigh number (¼104) convection current is
well set and strong enough to cause the swirl (convective distortion) in
isothermal lines. Isothermal lines are heavily concentrated inside the region
spotted by E2. This is the region with high temperature gradient, which causes
high HTI (E3). Next focus on the spots marked by circle (C1, C2, and C3).
Obviously, two downward streams of fluid (C1) cause very low temperature
gradient near the top wall (C2) and which leaves a region of low HTI (C3).
A spatially periodic region, extended along the horizontal centerline of the
cavity, shows very low irreversibility (HTI) due the lower temperature
gradients. Such region is defined as an idle region for irreversibility (Mahmud
and Fraser, 2002a, b). A thin extension of the idle region for irreversibility
exists between the two consecutive spots of HCBC at the top and the bottom
walls.

At Ra ¼ 105 (Figure 16(b)), spots of HCBC elongates along the horizontal
direction and at the same time concentrates more towards the walls. Now, three
spots of HCBC exist near the top wall and two near the bottom wall. Idle region
for irreversibility occupies more area inside the enclosure. An introduction of
the surface undulant dramatically changes the characteristic features of the
HTI inside the enclosure. Three spots of HCBC at the top wavy wall and two at
the bottom wavy wall are observed at Ra ¼ 104 for l ¼ 0:05 (Figure 16(c)).
Focusing first on the top wavy wall, the extension of HTI is higher near the
middle part of the wall than the part near the adiabatic walls. However, at the
bottom wavy wall zones of high HTI are symmetric (and also equal in size)
with respect to the vertical centerline of the cavity. For l ¼ 0:1 (Figure 16(e)),
spots of HCBC occupy slightly more region near the top and bottom wavy walls
when compared with the case l ¼ 0:05: For Ra ¼ 105 (Figure 16(d) and (f)),
HTI scenarios remain the same as in the case of Ra ¼ 104; but now spots of
HCBC concentrate more towards the wavy walls.

Conclusion
Laminar steady natural convection heat transfer and fluid flow inside a wavy
enclosure with two wavy walls and two straight walls are investigated
numerically. The effect of aspect ratio and surface waviness on heat transfer
and HTI is tested at different Rayleigh numbers. Aspect ratio does not play any
important role on the heat transfer inside a wavy enclosure of fixed surface
waviness, but when surface waviness changes from zero to a certain value,
aspect ratio dominates the heat transfer characteristics. The lower the surface
waviness, the higher is the heat transfer for lower aspect ratio, but this
statement flipped for higher aspect ratio. At higher aspect ratio, heat transfer
increases with the increase of surface waviness. For a constant Rayleigh
number, heat transfer falls gradually with an increasing surface waviness up to
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a certain value of surface waviness, above which heat transfer increases again
for low aspect ratio. Whereas for higher aspect ratio, heat transfer gradually
increases with an increase of surface waviness up to a certain value of surface
waviness and subsequently heat transfer falls gradually upto certain waviness,
above which heat transfer increases again like the other case.
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